• Mutual A domain interactions in the force sensing protein von Willebrand factor. Posch S, Aponte-Santamaría C, Schwarzl R, Karner A, Radtke M, Gräter F, Obser T, König G, Brehm MA, Gruber HJ, Netz RR, Baldauf C, Schneppenheim R, Tampé R, Hinterdorfer P. J Struct Biol. 2016 Apr 23. pii: S1047-8477(16)30081-8. doi: 10.1016/j.jsb.2016.04.012. [Epub ahead of print]

  • von Willebrand factor is dimerized by protein disulfide isomerase. Lippok S, Kolšek K, Löf A, Eggert D, Vanderlinden W, Müller JP, König G, Obser T, Röhrs K, Schneppenheim S, Budde U, Baldauf C, Aponte-Santamaría C, Gräter F, Schneppenheim R, Rädler JO, Brehm MA. Blood. 2016 Mar 3;127(9):1183-91.

  • Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions C. Aponte-Santamaría, V. Huck, S. Posch, A. K. Bronowska, S. Grässle, M. A. Brehm, Obser, R. Schneppenheim, P. Hinterdorfer, S. W. Schneider, C. Baldauf, F. Gräter 2015 Biophys. J. 108(9):2312-21

  • Brehm M, Huck V, Aponte-Santamaría C, Obser T, Grässle S, Oyen F, Budde U, Schneppenheim S, Baldauf C, Gräter F, Schneider S, Schneppenheim R. VWD type 2A phenotypes IIC, IID and IIE: A day in the life of shear stressed mutant VWF. Thrombosis and Haemostasis. 2014;112: Epub ahead of print, DOI: 10.1160/TH13-11-0902

  • on Willebrand disease type 2A phenotypes IIC, IID and IIE: A day in the life of shear-stressed mutant von Willebrand factor. MA Brehm, V Huck, C Aponte-Santamaría, T Obser, S Grässle, F Oyen, U Budde, S Schneppenheim, C Baldauf, F Gräter, SW Schneider, R Schneppenheim Thromb Haemost. 112: 96-108

  • von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. S. Grässle, V. Huck, K. I. Pappelbaum, C. Gorzelanny, C. Aponte-Santamaría, C. Baldauf, F. Gräter, R. Schneppenheim, T. Obser, S. W. Schneider (2014). Arterioscler Thromb Vasc Biol., 34(7):1382-9





  • Baldauf C, Pagel K, Warnke S, von Helden G, Koksch B, Blum V, Scheffler M. How Cations Change Peptide Structure. Chemistry - A European Journal. 2013;19:11224-11234



  • Baldauf, C.; Hofmann, H.-J., Ab initio MO Theory - An Important Tool in Foldamer Research: Prediction of Helices in Oligomers of ω-Amino Acids, Helv. Chim. Acta 2012 (95), 2348-2383.

  • Chen, J.; Edwards, S. A.; Gräter, F.; Baldauf, C., On the cis to trans isomerization of prolyl-peptide bonds under tension, J. Phys. Chem. B 2012 (31), 9346-9351. 

  • W. Li, T. Rudack, K. Gerwert, F. Gräter, and J. Schlitter, Exploring the multi-dimensional free energy surface of phosphoester hydrolysis with constrained qm/mm dynamics, Journal of Chemical Theory and Computation (2012).

  • S. Edwards, J. Wagner, and F. Gräter,  Dynamic prestress in a globular protein, PLoS Comput. Biol., 8(5), (2012).

  • I. B. Baldus and F. Gräter, Mechanical force can fine-tune redox potentials of disulfide bonds, Biophys. J., 102(3):622-629 (2012).



  • Rezaei Araghi, R.; Baldauf, C.; Gerling, U. I. M.; Cadicamo, C. D.; Koksch, B., A systematic study of fundamentals in α-helical coiled coil mimicry by alternating sequences of β- and γ-amino acids, Amino Acids 2011 (41), 733-742.

  • Zhou, M.; Dong, X.; Baldauf, C.; Chen, H.; Zhou, Y.; Springer, T. A.; Luo, X.; Zhong, C.; Gräter, F.; Ding, J., A novel calcium-binding site of von Willebrand factor A2 domain regulates its cleavage by ADAMTS13, Blood 2011 (117), 4623-4631.

  • F. Xia, A. K. Bronowska, S. Cheng, and F. Gräter, Base-catalyzed peptide hydrolysis is insensitive to mechanical stress, J Phys Chem B., 115(33):10126-32 (2011).

  • F. Gräter, Strained molecules: Insights from force distribution analysis,  (2011), In P. Comba, editor, Modeling of Molecular Properties, Wiley-VCH,  pages 301-310.

  • S. Xiao, S. A. Edwards, and F. Gräter, A new transferable forcefield for simulating the mechanics of caco3 crystals, The Journal of Physical Chemistry, 115(41):20067-20075 (2011). 

  • P. Strnad, V. V. Usachov, C. Debès, F. Gräter, D. A. D. Parry, and B.M Omary, Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins,  Journal of Cell Science, 124(24):4221-4232 (2011). 

  • M. Cetinkaya, S. Xiao, and F. Gräter,  Effects of crystalline subunit size on silk fiber mechanics,  Soft Matter, 7(18):8142-8148 (2011). 

  • F. Berkemeier, M. Bertz, S. Xiao, N. Pinotsis, M. Wilmanns, F. Gräter, and M. Rief, Fast folding -helices as reversible strain absorbers in the muscle protein myomesin, Proc. Nat. Acad. Sci., 108(34):14139-44 (2011).

  • W. Stacklies, C. Seifert, and F. Gräter ,Implementation of force distribution analysis for molecular dynamics simulations, BMC Bioinformatics, 12(101) (2011). 

  • F. Xia, D. Thirumalai, and F. Gräter, Minimum energy compact structures in force-quench olyubiquitin folding are domain swapped, Proc. Nat. Acad. Sci., 108(17):6963-8 (2011). 

  • M. Cetinkaya, S. Xiao, B. Markert, W. Stacklies, and F. Gräter,  Silk fiber mechanics from multiscale force distribution analysis, Biophys. J., 100(5):1298-305 (2011). 

  • M. Cetinkaya, S. Xiao, and F. Gräter, Bottom-up computational modeling of semi-crystalline fibers: From atomistic to continuum scale, Phys. Chem. Chem. Phys., 13(22):10426-9, (2011). 

  • M. Zhou, X. Dong, C. Baldauf, H. Chen, Y. Zhou, T. A. Springer, X. Luo, C. Zhong, F. Gräter, and J. Ding, A novel calcium-binding site of von willebrand factor a2 domain regulates its cleavage by adamts13, Blood., 117(5):4623-4631 (2011).

  • S. Xiao, W. Stacklies, C. Debès, and F. Gräter, Force distribution determines optimal length of -sheet crystals for mechanical robustness,  Soft Matter, 7(11):1308 - 1311 (2011).